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1 INTRODUCTION 

The family home is an important place for meaningful interactions and families are slowly allowing artificial agents, such 

as digital voice assistants, to join them in this space. Digital voice assistants and vacuuming robots may, however, only be 

the beginning of a stream of artificial agents into the family home. This development raises the question of how artificial 

agents are perceived by humans and how they in turn impact family dynamics. While research has associated meaningful 

relationships with pets with social and emotional well-being [30], little is known about the long-term effects of living with 

artificial agents. To bridge this knowledge gap, we propose an interdisciplinary approach that combines psychology, 

neuroscience, and human-ai interaction and views social dynamics of families through a neurocognitive lens. Here, we 

highlight the promise of this approach for family-centered design.   

 

We propose that -rather than looking at interactions of family members in isolation- it is essential to consider families as 

complex social systems with interdependent members [2]. This acknowledges that to understand the perception and 

interaction with artificial agents and the impact on dynamics within families, we need methodologies that can capture the 

system level. The strength of the neurocognitive approach we propose is that it not only includes subjective measures (e.g., 

questionnaires), but also more objective measures (e.g., brain activity), explicit and implicit measures, and peals apart 

multiple layers of the interaction (i.e., brain and behaviour) and allows to measure multiple individuals simultaneously. 

This approach can provide insight into effects and mechanisms thereby both delivering fundamental knowledge on family 

life as well as novel input into the development of new artificial agents with the ultimate goal of promoting family well-

being. 

2 LEVERAGING MOBILE NEUROIMAGING TO UNDERSTAND FAMILY DYNAMICS AND 

INFORMING FAMILY-CENTERED DESIGN 

Over the last years, attempts have been made to describe how individuals [4] or arbitrary groups [28] interact with artificial 

agents. These studies describe how expectations, beliefs, and perception at the level of the individual influence ongoing 
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interactions [10]. However, these studies focus on laboratory measures and do not provide a mechanistic understanding of 

how these new interactions influence attitudes and behaviours of the entire social system in real life situations. Recent 

interview with a small number of families [6] point towards a complex interplay between behaviour of family members 

and the impact of an artificial agent. A systematic and theory-driven evaluation is needed. Successful artificial agents not 

only need to work for one user but are embedded in a social system and respond to multiple users. Via perpetual 

communication they can affect the entire households, their primary target group. They communicate information and social 

cues, capture attention and can fulfil members’ cognitive and social needs [18]. We can only know the impact of these 

agents on social dynamics, when we know what individual members think, feel, and do in the social context of a family 

and how these individual minds influence each other.   

 

In our research we take a neurocognitive approach and we extend beyond merely using self-report and behavioural 

measures and include neuroimaging to assess brain activity. This approach aims to investigate the neural basis of cognitive 

processes, such as emotion and social decision-making [29], and allows us to measure behavioural and neural changes in 

family dynamics in response to artificial agents. That way, mobile neurocognitive methods allow us to measure adults and 

young children in a standardized, objective manner which is especially valuable when conducting inter-generational 

research [20]. Neurocognitive measures can offer insights into underlying processes that might not be captured through 

explicit self-report or behavioural measures due to limited verbal abilities (e.g. of younger children), social desirability, or 

unawareness of certain attitudes [9]. Previous studies employing neuroimaging techniques, have been able to successfully 

map individuals' response to artificial agents [10,11] and this approach has been successful in outline social dynamics of 

dyads [27] and non-family groups [31]. The next step is to understand the cognitive underpinnings of real-life interaction 

on a familial level. Brain-to-brain coupling, for example, allows us to identify shared patterns of brain activity by measuring 

two or more participants simultaneously [20]. In the past, this technique has been successfully used to relate neural coupling 

to social dynamics [5] and collective performance [25]. Within the family home, neural activation patterns across family 

members may, for example, reveal implicit power dynamics, such as follower-leader relationships during family 

interactions that may not be detected through purely behavioural research [15].  

 

In the past, neurocognitive research has, however, often been limited by its stationarity, requiring participants to be tested 

in an artificial laboratory setting and limiting natural interactions between multiple participants. This research often falls 

short in terms of ecological validity, as a most real-life interactions between family members take place in their home. 

Fortunately, the recent rise of mobile neuroimaging techniques offers new possibilities for using the neurocognitive 

approach in the context of family research. Importantly, this technology can now be used wirelessly, and it is relatively 

tolerant to motion artifacts, allowing for natural interactions [23]. This makes it possible to study unconstrained human-

robot interactions between multiple participants inside the family home [8] leading to high ecological validity and data 

quality [16]. Mobile neuroimaging techniques do not require families to travel to the laboratory and have minimal sample 

exclusion criteria, making it possible to test children across various age groups and allowing us to test diverse family 

structures [23].  

 

The approach we take is informed by the cognition in the wild approach spearheaded by the fields of anthropology and 

biology [12], which shows that an individual’s behaviour and cognition during a task measured in a laboratory does not 

reflect the behavioural and cognition in the natural environment of the individual [21,24]. A neurocognition in the wild 

approach will help capture the complexity and diversity of social behaviour and providing a richer explanation of 
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underlying mechanisms [13]. Behaviour and brain processes of social dynamics can only be truly understood when 

investigated in a situational context at home. This approach will allow to measure true behaviour in real-world situations, 

improve data quality [1,3], and ultimately lead to generalisable theories on human behaviour that extend beyond laboratory-

based theories [17,22].  

 

Looking into the future, the neurocognitive approach can be used to further improve families’ interaction with artificial 

agents. In a society that gets increasingly older, artificial agents will ideally soon engage in care activities in the family 

home. A necessary application of the neurocognitive approach will then be to inform us how to build improved artificial 

agents that are easily integrated into family homes. It is therefore important to know how artificial agents are perceived 

and which changes in their appearance or response style affect our perception of them. Neurocognitive research has already 

show that activation during engagements with robots can also activate object-specific brain regions [8] and that not only 

human-likeness but also perceived socialness shape brain activity during interactions with robots [14]. When artificial 

agents take over those sensitive tasks, we may not only consider how they look, but also how they are perceived by the 

user [10]. In the future, for instance, we may use this method to increase perceived socialness instead of human-likeness 

of artificial agents to create ideal circumstances for human-robot households [14]. Overall, this approach will provide us a 

more nuanced and objective understanding of human-robot interaction within familial settings, ultimately improving the 

integration of artificial agents into the family home. 

3 REMAINING CHALLENGES AND FUTURE COLLABORATION 

Despite the possible advantages of using the neurocognitive approach, challenges and questions remain (Table 1). Firstly, 

the process of setting up the neurocognitive installations can be quite time-consuming, involving numerous repetitions that 

can lead to boredom, especially among children. Children might also feel tense while wearing a neuroimaging device and 

their sudden movements might introduce noise, posing an additional challenge in data interpretation and analysis. 

Furthermore, studying neural synchrony requires researchers to implement a meaningful control task to correct for the 

effects of, for example, a shared environment [7]. Another challenge that arises is the case of discrepant results between 

the data collected with self-report and those collected with neuroimaging or behavioural measures. The dilemma lies in 

determining which data holds greater significance for designing artificial agents ensuring the well-being of the families.  

 

These challenges show that while the neurocognitive approach offers a fresh perspective on family studies, it should be 

complemented by other disciplines, enriching the overall understanding of family dynamics and interactions. For instance, 

collaboration with computer science is vital to improve robots’ behavioural patterns according to how it is perceived by 

the users. Partnering with developmental and family psychology is crucial to account for developmental factors like brain 

maturation. The neurocognitive approach will therefore reach its full potential in collaboration with other fields. By 

integrating neurocognition with perspectives from diverse disciplines we can enhance our understanding of family 

dynamics and improve family-centered designs. 
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Table 1: Remaining questions for the workshop 

Question Challenge 

What methods can we employ to address age-

related differences in children's interactions with AI?  

It is reasonable to expect that a twelve-year-old would engage 

more extensively with a digital voice assistant compared to a 

four-year-old 

How do we design tasks that are suitable for all 

age groups?  

Traditional decision tasks, such as an economic game like the 

trust game, may not be appropriate for young children. 

Fortunately, more and more child-friendly tasks are available 

[19,26]. Child-friendly adaptations are, however, rare and often 

not computer-based, making data analysis challenging. In return, 

the child-friendly versions of those tasks may fail to engage adult 

family members and affect their decision-making. 

How do we use self-report in children who cannot 

read or write? 

Having a researcher or parent present while answering self-report 

questions may introduce social desirability bias and 

systematically affect the data obtained in families. Relying solely 

on images for children's self-reporting may be limiting.  

What reference category can we use for studying 

artificial agents in the family context [8]? 

Often, robotic agents are compared to human agents, but this 

might not be the best reference category. To provide a well-

controlled and nuanced assessment, results need to be compared 

across a wide variety of households with or without artificial 

agents. 
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